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Quantum-gate implementation in permanently coupled AF spin rings

without need of local fields
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We propose a scheme for the implementation of quantum gates which is based on the qubit encod-
ing in antiferromagnetic molecular rings. We show that a proper engineering of the intercluster link
would result in an effective coupling that vanishes as far as the system is kept in the computational
space, while it is turned on by a selective excitation of specific auxiliary states. These are also shown
to allow the performing of single- and two-qubit gates without an individual addressing of the rings
by means of local magnetic fields.

PACS numbers: 03.67.Lx, 75.50.Xx

Localized electron spins in solid-state systems are
widely investigated as potential building blocks of quan-
tum devices and computers1. In fact, their relatively
weak environmental coupling makes them ideal candi-
dates for the realization of a long-lived quantum mem-
ory2. However, the spins of spatially separated electrons
weakly interact also with each other: the implementation
of the conditional dynamics thus requires either the use of
auxiliary3 or “bus” degrees of freedom4, or additional re-
sources (e.g., electric fields, more complex architectures)
that allow a selective enhancement of the effective spin-
spin interaction5,6. Alternative approaches are based on
multi-spin encodings of the qubit in coupling-free sub-
spaces, which render unnecessary the tuneability of the
physical couplings during gating7.

The implementation of single- (two-) qubit gates also
requires the capability of selectively addressing single
(couples of) spins by means a high spectral and/or spa-
tial resolution. Though increased by the qubit encoding
in spin clusters rather than single spins8, the lenghtscales
characterizing such local magnetic fields are still highly
demanding from an experimental point of view. The
global manipulation schemes9–11, where quantum compu-
tation is performed also in the absence of such individual
addressing, thus represent a valid alternative, maybe the
most likely route in the nearest future.

In the present paper we propose a possible approach
to the implementation of the single- and two-qubit gates,
based on the qubit encoding in antiferromagnetic (AF)
molecular rings12 and on its manipulation by means of ei-
ther local or global magnetic fields. In fact, the character-
istic intracluster AF ordering of the spins is shown to al-
low an intercluster coupling which is effectively vanishing
or finite, depending on the system being in its computa-
tional space or excited to specific auxiliary states, respec-
tively. As an important point, this switching of the qubit-
qubit coupling does not require additional resources, nor
introduces longer timescales as compared to the ones that
are used for performing the single-qubit gates. More-

over, the above scheme is shown to provide an efficient
means for the implementation of a global-manipulation
approach, already within a simple ABAB . . . linear chain
of rings and without requiring a multi-subsystem encod-
ing of the qubit, nor the use of a large number of auxil-
iary units. In both these respects, the existence of excited

states that comes with the implementation of the qubit in

spin clusters rather than single s = 1/2 spins represents

a crucial resource. The prototypical physical systems we
have in mind are the substituted, Cr-based AF rings (see
Ref. 13 and references therein); however, the present ap-
proach can in principle be applied to analogous systems
as well. Therefore, the scheme is first explained in gen-
eral terms, starting from a given model Hamiltonian; its
justification, together with a more detailed discussion on
the most relevant properties of the rings, is the object of
the final part of the paper.

Scheme for the quantum-gate implementation. The
two-qubit model Hamiltonian HAB = HA+HB +HAB

int is
defined in the Hilbert space of the effective two-level sys-
tems A and B, namely {|0〉, |1〉 , |i > 1〉}A⊗{|0〉, |1〉, |j >
1〉}B, and reads as follows:

HAB =
∑

α

∑

β

(ǫA
α + ǫB

β ) |α〉〈α| ⊗ |β〉〈β|+

∑

α,β>1

J AB
αβ |α〉〈α| ⊗ |β〉〈β|, (1)

where the parameters J AB
αβ are constant, reflecting the

permanent nature of the intercluster coupling. As
schematically shown in Fig. 1(a), HAB

int leaves unaffected
the energy levels corresponding to both A and B being in
the respective computational spaces, while renormalizing
the ones associated to the excited states of B. It should
be noted that the above coupling is “asymmetric”, for
the excitation of A to its own higher-lying states does
not induce any renormalization in the energy levels as
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far as B is in its computational space:

JAB
α≤1 β>1 6= 0, J AB

α>1 β≤1 = 0. (2)

These Hamiltonian and energy spectrum can be ex-
ploited for the implementation of the two-qubit gates in
a straightforward manner. In fact, the application of a π-
pulse centred on the frequency h̄ω = ǫB

b1
− ǫB

1 +JAB
1 b1

will
only excite B from |1〉 to the excited state |b1 > 1〉 if A is
in its |1〉 state. A sequence of two such pulses, separated
by a time delay τ , would thus result in a conditional
excitation and deexcitation, and more precisely in the
application of a two-qubit quantum gate defined by the
truth table |α〉 ⊗ |β〉 → e−iαβθ|α〉 ⊗ |β〉, being α, β = 0, 1
and θ = τ(ǫB

b1
+JAB

1 b1
−ǫB

1 )/h̄. For θ = π the above trans-
formation corresponds to a controlled-Z (CZ), that can
be combined with two single-qubit rotations of the target
qubit in order to perform a CNOT15. On the other hand,
the unconditional dynamics (i.e., the single-qubit gates)
requires the system to be kept in its computational space
throughout the time evolution, for the transition energies
between the |0〉 and |1〉 states of A (B) doesn’t depend
on the setting of B (A) (see Ref. 13 for a detailed discus-
sion concerning the case of Cr7Ni molecules). Therefore,
the engineering of a time-independent two-qubit Hamil-
tonian HAB such as the shown in Eq. 1, combined with
a selective addressing of the spin clusters by means of
local, pulsed magnetic fields, allows in principle to com-
plete the set of universal quantum gates. The local ma-
nipulation of the qubits makes it superfluous (though not
detrimental) for A and B to be physically different from
each other.

The above effective Hamiltonian also allows an efficient
implementation of quantum gates in the absence of a lo-
cal control on the qubits. The kind of quantum hardware
we will refer to in the following consists in a linear array
. . . An−1Bn−1AnBnAn+1Bn+1 . . . composed by two sets
of identical molecules (Fig. 1(b)). These are assumed
to differ from one another with respect to the energy
eigenvalues, but to share the qualitative features of the
low-energy spectrum. Correspondingly, the interaction
between An and its left neighbour Bn−1 is accounted for
by an Hamiltonian HBA

int which is identical to the HAB
int of

Eq. 1, except for the swapping of the molecules’ labels.
The implementation of quantum gates solely by means
of global fields requires the use of auxiliary qubits in ad-
dition to the logical ones. In the following, the linear ar-
ray will be assumed to consist in an alternated sequence
of the two: the latter encode the quantum information,
whereas the former are all set to |0〉, with the exception
of the so-called “control unit” (CU), which is set to |1〉9.
As demonstrated in Ref. 11, the capabilities required for
the gates implementation with such a quantum hardware
consist in: (i) the separate switching, on and off, of all
the An ↔ Bn and Bn−1 ↔ An couplings, and the ap-
plication of UCNOT to the corresponding set of coupled
cells; (ii) the performing of general rotations in each of
the two subsets A and B. More specifically, the single-
qubit gates can be performed with an overall number of

qubits which is twice that of the logical ones, whereas
the complexity of the gating and the number of auxil-
iary qubits remarkably increase as far as the CNOT is
concerned16.

In the present case, the difference between the tran-
sition energies of A and B and the directionality of the
effective coupling (Eq. 2) allow both the above conditions
to be met. The conditional excitation of the molecules A
(B) to their auxiliary state |a1〉 (|b1〉) can be exploited for
the implementation of the UCZ involving each An (Bn)
and its left neighbour Bn−1 (An), as shown in the pre-
vious paragraph (requirement (i)). For the interaction
Hamiltonians HAB

int and HBA
int to be effectively turned off

and the single-qubit rotations to be performed, instead, it
suffices to manipulate the spin clusters within the respec-
tive computational spaces (requirement (ii)). Moreover,
the existence of a futher excited state in at least one of
the molecules (e.g., |b2 > 1〉 in B) avoids the increase of
additional auxiliary qubits for the CNOT implementa-
tion. In practice, the sequences of the SWAP gates that
move the information within the array rigidly shift the
states of the identical cells; being the logical qubits all
encoded alternatively in A or in B and the physical in-
teraction only effective between nearest neighbours, the
main obstacle in performing the CNOT essentially con-
sists in bringing the control- and the target-qubit next to
each other. The specific resource that is provided by the
present spin clusters is the above mentioned state |b2〉:
our aim is that of using |b2〉 in order to block, and even-
tually invert, the motion of the qubits it collides with,
thus provoking two or more logical qubits to be encoded
on adjacent cells. In fact, the USWAP rotation can be
decomposed into a sequence of three UCNOT

15:

UAnBn

SWAP = UAnBn

CNOT UBnAn

CNOT UAnBn

CNOT , (3)

where An (Bn) acts as a c-qubit (t-qubit) in the first and
third UCNOT , and as a t-qubit (c-qubit) in the second
one. A UCNOT can in turn consist in the combination
of a controlled-Z (UCZ) and two rotations of the t-qubit,
as shown in Fig. 2(a). As a key point, the initial setting
of Bn to its |b2〉 state renders uneffective the transforma-
tions (i.e., puts out of resonance the transitions) enclosed
in the dotted boxes; it is easy to verify that the remain-
ing ones result in an identical transformation. In the

same way, the application of U
An−1Bn

SWAP does not change
the state of An−1 (nor that of Bn) if Bn is initially set
to |b2〉.

In Fig. 2(b) we show how to exploit this block for the
implementation of a CNOT, where |φn0

〉 and |φn0−1〉 act
as a c- and a t-qubit, respectively. The required steps are
the following: (S1) after the CU has been positioned
on the right-hand side of the c-qubit, a transformation
UB

2 ≡ |1〉〈b2| + |b2〉〈1| is applied (π-pulse with central
frequency h̄ω = ǫB

b2
− ǫB

1 ). As a result, the only B cell
that is excited to the auxiliary state |b2〉 is the CU Bn0

,
whereas all the others remain in the |0〉 state17; (S2) a

rotation UAnBn

SWAP swaps all the qubits but An0
and Bn0

,
thus allowing the collision of the control and target (log-
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ical) qubits, |φn0
〉 and |φn0−1〉; a transformation (S3)

U
AnBn−1

CNOT is performed, which is only effective on |φn0−1〉,
being all the cells An6=n0

in their |0〉 state; (S4) a sec-

ond UAnBn

SWAP , as in S2, brings all the qubits back to their
original positions; (S5) a second U2 ≡ |1〉〈b2|+ |b2〉〈1|,
as in S1, reinitializes the CU to its |1〉 state.

Physical implementation of the qubit. We now con-
sider in greater detail the physical implementation of
the qubit by referring to a class of prototypical systems,
namely the substituted CrxNi rings (with odd x), where
the presence of the Ni ion typically results in the forma-
tion of a ground-state doublet. The precise identification
of a spin cluster that meets all the above requirements
is beyond the scope of the present paragraph, which is
rather aimed at demonstrating the suitability of these
specific molecules at a qualitative level, and at pointing
out possible solutions for future molecular engineering.
The single-qubit terms, which we have so far denoted by
Hχ=A,B, correspond to the following spin Hamiltonian of
the related CrxNi molecule12:

H =

x+1
∑

i=1

Jisi · si+1 + µB[B0ẑ + Bxy(t)] ·

x+1
∑

i=1

gisi

+

x+1
∑

i=1

di [(sz,i)
2 − si(si + 1)/3] +

x+1
∑

i<j=1

si · Dij · sj, (4)

Ji=2−x+1 = J and Jx,x+1 = J ′, gi=1−x = g and gx+1 =
g′, si=1−x = 3/2 and sx+1 = 1, being i = x+1 the site of
the Ni substitution. As discussed in detail in Ref. 13 for
the case x = 7, the ground-state doublet that forms the
computational basis {|0〉, |1〉} approximately corresponds
to {|S = 1/2, Sz = −1/2〉, |S = 1/2, Sz = +1/2〉}; these
states are characterized by an antiparallel alignment of
the neighbouring spins, which we propose to exploit in or-
der to obtain the effective cancellation of the intercluster
coupling. The auxiliary states |b1〉 and |b2〉 are respec-
tively identified with the first excited states M = −3/2
and M = −1/2 (b1,2 = 2, 3), belonging to the multiplet
S = 3/2.

The realization of an intercluster coherent coupling
has been demonstrated in similar systems (ferromagnetic
spin clusters) by means of aromatic molecules14. For the
sake of clarity, we shall assume in the following that an
effective coupling between the rings A and B may result
from one or more links that connect individual spins be-
longing to the two of them. An Ising-like interaction be-
tween spin i of cluster A and spin j of cluster B, namely
HAB

int = JAB
ij sA

z,is
B
z,j , results in an analogous coupling be-

tween A and B:

J AB
αβ =

JAB
ij 〈α||sA

z,i||α〉〈β||s
B
z,j ||β〉 SA

z,αSB
z,β

√

SA(SA + 1)(2SA + 1)SB(SB + 1)(2SB + 1)
,

(5)
where SA

z,α(SB
z,β) is the average value of SA

z (SB
z ) corre-

sponding to state |α〉 of A (|β〉 of B), and 〈0||sA,B
z,i ||0〉 =

〈1||sA,B
z,i ||1〉, being the reduced matrix elements constant

TABLE I: Reduced matrix elements 〈β||sz,k||β〉 in the Cr5Ni
(up), Cr7Ni (middle) and Cr9Ni (down) rings. The index val-
ues k = 6 (up), k=8 (middle), and k = 10 (down) correspond
to the Ni substitution.

β sz,1 sz,2 sz,3 sz,4 sz,5 sz,6 sz,7 sz,8 sz,9 sz,10

0, 1 1.48 -1.17 1.40 -1.17 1.48 -0.80 - - - -

b1, b2 1.51 -0.13 1.28 -0.13 1.51 -0.17 - - - -

0, 1 1.39 -1.13 1.30 -1.12 1.30 -1.13 1.39 -0.77 - -

b1, b2 1.40 -0.30 1.09 -0.11 1.09 -0.30 1.40 -0.39 - -

0, 1 1.33 -1.10 1.23 -1.08 1.21 -1.08 1.23 -1.10 1.33 -0.75

b1, b2 1.31 -0.44 1.01 -0.21 0.90 -0.21 1.01 -0.44 1.31 -0.38

within each S-multiplet. In presence of more than one
spin-spin interaction, Eq. (5) can be generalized by sum-
ming over the i and j indexes. In particular, we will con-
sider the case where the spin i of cluster A is linked to
two adjacent spins, j and j + 1, of B, with JAB

ij = JAB
i j+1

(see Fig. 1(c)). As a consequence of the approximately
staggered (AF) arrangement of the reduced matrix ele-
ments characterizing |β = 0, 1〉 (see Table I and relative
discussion), the sum of the two individual couplings re-
sults in a cancellation of the effective one between the
rings:

〈β||sB
j ||β〉 = −〈β||sB

j+1||β〉 =⇒ J AB
αβ = 0 for β = 0, 1.

(6)

On the other hand, the excitation of B to a state lacking
such intracluster AF arrangment switches on the effective
coupling to A (see Fig. 1(d)). It should be noted that the
key result, namely Eq. 6, doesn’t depend neither on the
assumed Ising-like form of HAB

int , nor on the presence of
two disinct links: an Heisenberg coupling or a single link
symmetrically coupled to sB

z,j and sB
z,j+1 would lead to

the same result.
In order to verify to which extent Eq. 6 holds in realis-

tic CrxNi rings, we have performed detailed calculations
for x = 5, 7, 9 (Table I). While an order-of-magnitude in-
crease is actually achieved by exciting the system from |0〉
or |1〉 to |b1〉, the vanishing of JAB

αβ in the computational
basis would require slightly asymmetric links, such that
JAB

i,j = JAB
i j+1〈β||sj ||β〉/〈β||sj+1||β〉 6= JAB

i j+1 (β = 0, 1).
As already mentioned, a crucial role within our

scheme is played by the (excited) auxiliary states of
the molecules. The same possibility of inducing di-
rect transitions between these and the ground-state dou-
blet by means of an oscillating magnetic field is a non-
trivial issue, for it requires non-vanishing matrix elements
〈β|

∑x+1

i=1 gisi|β
′〉, with β = 0, 1 and β′ = b1, b2. In fact,

in Cr7Ni these are approximately proportional to gNi −
gCr ≃ 2.2−1.98, and are thus finite only due to the pres-
ence of the Ni substitution; besides, they depend on the
value of the static magnetic field B0 (for B0 = 2 T13, for

example, |〈0|
∑8

i=1 gisx,i|1〉/〈0|
∑8

i=1 gisx,i|b1〉| = 3.8).
From these calculations, and from others performed on
analogous systems (e.g., Cr7Fe and Ni7Cu), we conclude
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that, as far as the impurity-Cr exchange is comparable to
the Cr-Cr one, the main physical properties required by
the discussed approach are satisfied. Therefore, a possi-
ble implementation of the linear A-B array may be com-
posed by CrxNi rings with two different values of Cr ions
(xA 6= xB), or by two among the existing variants a given
of CrxNi (xA = xB), characterized by different values of
the physical parameters J and g.

In conclusion, we have proposed a scheme for the im-

plementation of quantum gates in AF spin clusters which
does not require the intercluster interaction to be tune-
able during gating. Having in mind the prototypical case
of the Cr-based rings, we have shown how specific aux-
iliary states allow in principle to control the effective
coupling between the qubits, and to implement global-
manipulation approaches, with a minimum number of
auxiliary qubits, smaller than the one required by single-
spin encodings.
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FIG. 1: (a) Schematics of the lowest energy levels of the AB system with and without (left- and right-hand sides, respectively)
the effective intercluster coupling. The levels corresponding to the computational space do not undergo energy renormalizations;
being SA

z,0 = −SA
z,1, J

AB
0 b1

= −J AB
1 b1

(see Eq. 5). (b) Sketch of the linear array of rings ABAB . . . , with asymmetric couplings
between each two neighbouring units. (c) Intracluster ordering of the electron spins characterizing the ground-state doublet of
a prototypical AF ring, namely the substituted Cr7Ni. Possible intercluster molecular links (solid lines), locally coupling spin i

of ring A with j and j + 1 of B. (d) The excited state |b1〉 of B lacks the above antiparallel arrangement of the adjacent spins.

(a) An × �������� • �������� e−iπY/4 Z eiπY/4 • e−iπY/4 Z eiπY/4
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Bn × • �������� • • e−iπY/4 Z eiπY/4 •
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1
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S
3

S
4

S
5

An0−1

|φn0−1〉 |φn0−1〉
×

|0〉
•

|0〉
×

|φ′

n0−1〉 |φ′

n0−1〉

Bn0−1

|0〉
U2

|0〉
×

|φn0−1〉
��������

|φ′

n0−1〉
×

|0〉
U2

|0〉

An0

|φn0
〉 |φn0

〉
×

|φn0
〉

•
|φn0

〉
×

|φn0
〉 |φn0

〉

Bn0

|1〉
U2

|b2〉
×

|b2〉
��������

|b2〉
×

|b2〉
U2

|1〉

An0+1

|φn0+1〉 |φn0+1〉
×

|0〉
•

|0〉
×

|φn0+1〉 |φn0+1〉

Bn0+1

|0〉
U2

|0〉
×

|φn0+1〉
��������

|φn0+1〉
×

|0〉
U2

|0〉

FIG. 2: (a) Decomposition of UAnBn

SWAP in terms of UCZ and single-cell rotations (Y and Z correspond to the Pauli matrixes
σy and σz, respectively). The rotations enclosed in the dotted boxes are uneffective if Bn is initially set outside from its
computational space, to the auxiliary state |b2〉. The resulting unitary transformation can thus be written as UAnBn

SWAP =
|00〉〈00| + |11〉〈11| + |01〉〈10| + |10〉〈01| + (|0〉〈0| + |1〉〈1|) ⊗ |b2〉〈b2| . (b) CNOT gate applied in five steps (S1−5) to |φn0

〉 and
|φn0−1〉, acting as control- and target-qubit, respectively. On top of the wires we report the quantum states of the cells after
each step (for simplicity, such notation refers to the case where the subsystems are never entangled with each other; we can
thus write |φn0

〉 ⊗ |φ′

n0−1〉 = UCNOT |φn0
〉 ⊗ |φ′

n0−1〉).
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